Ultra-Wideband
UWB is a cutting-edge RF technology that delivers precise location with positional accuracy of UWB-tagged objects down to the centimeter-level. It can transmit very high data rates over short ranges, and pinpoint exact location in real-time. It also consumes very little power, allowing for affordable and efficient hardware options, such as tracking tags with coin cell batteries that can operate for multiple years without being recharged or replaced.
The reason UWB positioning is so precise is due to its distance-based measurement that calculates location based on how long it takes for pulses of radio to travel from one device to another. While this only works over shorter ranges, the location of UWB signals can be determined with an accuracy of less than 50 centimeters (with optimal conditions and deployment), and extremely low latency.
Chirp Spread Spectrum (CSS)
Chirp Spread Spectrum, also referred to as chirp, is a unique RF technology, that offers distinct advantages like long-range positioning, indoor to outdoor support and low power requirements. It’s powerful combination of long-range accessibility, high 1-2 m accuracy, and performance reliability make it one of the most versatile RTLS technologies. It especially excels in industrial-grade deployments, and requires less infrastructure than other technologies for great ROI. Inpixon is the leader in CSS RTLS technology, offering chirp-enabled RTLS solutions including flexible, long-range location tracking tags, anchors and a proprietary location chip, Inpixon nanoLOC, which serves as the foundation of many chirp technology locationing solutions worldwide.
WiFi
Wi-Fi’s vast presence and accessibility makes it a very important standard for RTLS applications. It can be leveraged in many location-based use cases and offers options to easily get started with indoor positioning through existing Wi-Fi access points and infrastructures. Wi-Fi indoor positioning solutions use existing Wi-Fi access points or Wi-Fi enabled sensors, to detect and locate transmitting Wi-Fi devices, such as smartphones and tracking tags throughout indoor spaces.
Location data collected by sensors or access points, or sent from APs to client devices, is ingested by various locationing applications and translated into insights that power multiple location-aware use cases. Wi-Fi-based positioning systems can use different methods to determine the location of devices. Most rely on Received Signal Strength Indicator (RSSI) based techniques. However, some applications can leverage more advanced Wi-Fi positioning methods.
Bluetooth Low Energy
BLE has unique characteristics that have made it one of the most popular RF technologies for RTLS. BLE has a large presence in wireless devices, an extensive set of low-power, low-cost, and easy to implement hardware options, and the flexibility to be used in many location-based applications. BLE indoor positioning solutions use either BLE-enabled sensors or beacons to detect and locate transmitting Bluetooth devices, such as smartphones or tracking tags throughout indoor spaces. Location data collected by the sensors or sent from beacons to mobile devices is then ingested by various locationing applications and translated into insights that power multiple location-aware use cases.
RFID
There are two main categories of RFID technology – passive RFID and active RFID. Passive RFID relies on battery-less tags that receive signals from RFID readers which then power the tag if within the communication range. From this, the location of the tag can be determined, although due to interference with physical obstructions – passive RFID typically only yields short-range positioning. Passive RFID is a low-cost option suitable in deployments where not much more than identification is required. Active RFID – includes tags with an integrated battery and receivers that operate similar to how passive RFID does. They are usually more expensive than their counterpart but offer a longer range. However, they are still vulnerable to interference by physical obstructions just like passive RFID.
Infrared (IR)
IR isn’t a widely used RTLS technology, but it can be leveraged for locationing in addition to or without other RF standards. Infrared is the same technology leveraged in TV remotes. Just like a remote, an infrared-based tag can send out an optical signal to a receiving device and use this to determine its location. Infrared requires line of sight between a transmitter and receiver to function and is limited to only providing room-level accuracy. While IR tags are typically very low cost, deployments require costly infrastructure to track the tags, which most organizations likely won’t already have.
Ultrasound
Ultrasound is a sonic alternative to RF and optical locationing technologies. Deployments use ultrasound waves which are capable of determining the precise location of objects but encounter physical barriers, such as walls, which limit ultrasound’s effectiveness to room-level accuracy.
|
|
|
|
|
|